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A model was derived for the length distribution of aluminum etch tunnels, based on an assumed 
constant death rate per unit length. Both active and dead tunnels were accounted. The model gives 
reasonable fits to measured tunnel length distribution data  with two adjustable parameters, the death 
rate per unit length and the number of  active tunnels. The death rate parameter has a value of  about 
2% of tunnels dying per/~m of  growth length for the set of  experimental data. The numbers of  active 
and dead tunnels appear to be consistent with other tunnel measurements. 

Nomenclature 

d depth of field in SEM photograph 
F fraction of tunnels 
i current density (Acm- 2) 
KD fraction of tunnels dying per unit length 

(~m-') 
l length of tunnel under consideration (#m) 
AI length increment (#m) 
L maximum tunnel length from time zero (#m) 
n number of Al increments 
N number of tunnels per cm 2 
N' number of tunnels per arbitrary area 
t time (s) 
u tunnel velocity (~tm s ~) 

1. Introduction 

Tunnel etching of aluminum foil is a commercial 
process used to increase area and capacitance of elec- 
trolytic capacitors. Alwitt et al. [1] have recently 
reviewed the process and presented effects of several 
parameters on velocity and width. 

Tunnel length distribution is an important aspect of 
the tunnel etch phenomenon that has not previously 
been treated. Hebert [2] and Alwitt et al. [3] have 
shown that tunnels die when the value of a geometry 
parameter related to the tunnel length and the taPer 
ratio reaches a critical value. This geometry parameter 
is linearly related to the steady-state diffusion resist- 
ance within tunnels. He gives evidence that the critical 
transport resistance is that required to give saturation 
of AIC13 at the end. On the other hand, examination 
of scanning electron microscope (SEM) photographs of 
tunnels shows that they are not of uniform length. 
Only a small fraction grow to the maximum length 
corresponding to their constant [2] velocity and the 

w tunnel width (#m or cm) 
~b ratio of depth of field to length scanned in 

SEM 

Subscripts 

A active tunnels 
D dead or dying tunnels 
e end of tunnel 
E ends of all active tunnels 
F foil surface 
o initial generation of tunnels 
T total tunnels 
w tunnel wall 
W walls of total number of tunnels 

duration of the experiment. Another death mechanism 
is indicated for the shorter tunnels. 

A model is derived here, based on a continuous 
death mechanism, relating tunnel length distribution 
to duration of an experiment, or maximum tunnel 
length. The model is fitted to experimental SEM data, 
and death rate parameters are evaluated. 

2. Model 

The total number of tunnels observed on an SEM 
photograph is the sum of the number of active tunnels 
at the time the current was turned off, and the number 
of tunnels that died from time zero to time of current 
off. 

NT = NA + ND (1) 

Assuming all the current goes to active tunnels, the 
number of active tunnels can be described by 

iF 
N A = iew2 (2) 

0021-891X/89 $03.00 + .12 �9 1989 Chapman and Hall Ltd. 69 



70 THEODORE R. BECK, HIDENORI UCHI AND KURT R. HEBERT 

Average current density to the foil surface, iv, is a 
constant during a galvanostatic experiment and the 
average current density at the tunnel ends, ie, is con- 
stant for constant tunnel velocity [2]. Tunnel width is 
reasonably constant with length at temperatures of 
60-70 ~ C but at 90 ~ C tunnels taper considerably. For 
simplicity in the derivation, it is assumed that w is 
constant in the range 60-80~ for all the longest 
tunnels. For  these conditions, NA is a constant. 

The derivation of the tunnel length distribution 
function in this paper is based on the assumption that 
the fraction of tunnels dying per unit time is constant. 
This fraction is denoted KDu, where u is the constant 
tunnel growth velocity. Further, if tunnels are selected 
randomly for death, without preference for certain 
lengths, the probability of  an individual tunnel dying 
per unit time is also KDu. Thus, KD, which is the 
probability of death of an individual tunnel per unit 
length of its growth, is assumed constant in this work. 
A constant value for KD would follow from the con- 
cept of a competition between continuing the propaga- 
tion of a given tunnel or initiating an adjacent new 
tunnel on the surface of the foil. If propagation is by 
repeated nucleation of corrosion steps [3] and the 
ohmic potential drop in a tunnel is small [2], the 
assumption of  a constant KD is reasonable. Another 
possible reason for a constant death probability would 
follow from the mechanism for tunnel growth given by 
Hebert [2]. According to this mechanism, the ends of 
all tunnels are poised at a critical potential for passiva- 
tion, so that tunnels would be chosen randomly for 
death at a rate which balanced the formation rate of 
new tunnels. The derivation proceeds on the basis of  
constant KD and the final equation is compared to 
experimental data for evaluation of  its validity. 

The number of dead tunnels is related to KD by 

ND = N A -4- NAKDUt (3) 

in which 

ut = L (4) 

the maximum tunnel length. The total number of 
tunnels is then 

N T  = N A -t- NAKDUt (5) 

In non-dimensional form 

NT 
- -  = 1 + KDUt (6) NA 

The length distribution function of active tunnels is 
denoted F(l, t); the fraction of active tunnels at length 
l, and within a small interval in length A/, is F(l, t)Al. 
The differential equation for the tunnel length distri- 
bution function is derived by consideration of changes, 
resulting from tunnel growth and death, in the number 
of active tunnels in a small interval in tunnel length Al, 
during a small time interval At. In At, the fraction 
of tunnels entering Al by growth is uF(l, t)At, and 
the fraction of tunnels leaving by growth is uF(l + 
Al, t)At. Since KD is the fraction of tunnels dying per 
unit length as tunnels grow, the fraction of  tunnels 

which die in At is KDuAt. Also, since tunnels are 
selected randomly for death, the number of tunnels 
within length interval Al which die in At is propor- 
tional to the number of  tunnels in that length inter- 
val. Thus, the fraction of tunnels dying in At in Al is 
KDuAtF(I, t)Al. Finally, the accumulation of tunnels 
within Al in At is F(l, T + At)A/ - F(I, t)Al. 

The expressions for changes in the distribution 
function by growth, death and accumulation are 
formed into a continuity equation for the distribution 
function. 

Al[r(l ,  t + At) - F(l, t)] 

= uAt[F(l, t) - F(1 + Al, t)] - KDuF(I, t)AIAt 

(7) 

If  AI and At are both allowed to approach zero, a 
differential equation for F(/, t) is formed. 

OF/Ot + uaF/Ol = - K D u F  (8) 

This continuity equation is mathematically equivalent 
to the equation for reactant concentration in a plug- 
flow chemical reactor with a first-order chemical reac- 
tion and no diffusion. 

The initial condition tbr the distribution is 

F(l, 0) = 6(1) (9) 

in which 6(I) is the Dirac delta function. 6(l) has a 
value of oo at l = 0, and zero elsewhere. Equation 9 
represents the tunnels which are assumed to form 
immediately when the current is first applied in the 
experiment. By definition of the Dirac delta function, 
the integral of 6(l) from - oo to 0% which represents 
all the tunnels in the distribution, is unity, as required. 
The boundary condition at I = 0 is based on continu- 
ity of  the distribution at l = 0. The flux of  tunnels in 
l space at l = 0 must be equal to the nucleation rate 
of new tunnels. The flux at l = 0 is F(0, t)u. The 
nucleation rate, which, in order to preserve the current 
balance, must equal the total rate of tunnel death at 
all lengths, is Kvu. Thus the boundary condition at 
l = 0 is  

r (0 ,  t) = KD (10) 

Equations 8-10 were solved through separate con- 
sideration of first, the initial generation of tunnels 
formed at t = 0, and then, all tunnels formed after 
t = 0. The distribution function for the initial gen- 
eration is determined by the continuity equation, 
Equation 8, which may be rewritten as 

DFo/Dt = - KDuF o (11) 

in which DFo/Dt is the substantial derivative of F0, 
and is equal to the left side of  Equation 8. The sub- 
stantial derivative refers to changes in number of a 
particular group of tunnels within a small increment 
of  length, as the tunnels in the group grow and some 
of them die. Since all the tunnels in F0 are always at 
some particular length, it is useful to write Equation 11 
in terms of the substantial derivative. In the case under 
consideration, Equation 11 is integrated with the initial 
condition, Equation 9, and the boundary condition 

F0(0, t) = 0 (12) 
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The solution for F 0 is 

Fo = 6(l - ut) exp (--KDut) 

= 6(l -- ut) exp ( - - K o l )  (13) 

Thus, the tunnels in the initial generation may always 
be found at I = ut, but their number diminishes expo- 
nentially with time. The continuity equation for tunnels 
formed after t = 0 is Equation 8, with the boundary 
condition Equation 10 and the initial condition 

F~(I, 0) = 0 (14) 

The solution, obtained with Laplace transforms, is 

F , ( l , t )  = K D e x p ( - K o / ) ; l  < ut 
05) 

F~(l,t) = 0 ; l >  ut 

The total distribution function for active tunnels is 
F(l,  t) =- Fo(l, t) + F,(l ,  t): 

F(1, t) = 6 ( l -  ut) e x p ( - K D l )  

+ KD exp (--KD/); l < ut (16) 

F ( l , t )  = 0 ; l  > ut 

Integrating F(l,  t) from l = 0 to l = ut gives a result 
of unity, as expected from the definition of  the length 
distribution function. 

The distribution of  dead tunnels can be calculated 
with the active tunnel distribution given above. The 
rate of  production of dead tunnels at length l is 

aFD/at = KDuF(I, t) (17) 

where FD(1, t) is the distribution function of dead 
tunnels on a total active tunnel basis. Thus, if FD(I, t) 
is integrated from l = 0 to I = oo and then multiplied 
by the total number of  active tunnels, the result would 
be the total number of  dead tunnels. To obtain FD (l, 
t), Equation 16 is inserted for F(/, t) in Equation 17, 
and Equation 17 is integrated with respect to time, with 
the initial condition at each length 1 that FD (l, l/u) = O. 
This condition arises because the distribution function 
Equation 16 reaches length l at time t/u. The result for 
the distribution of dead tunnels is 

FD(I, t) = K~u  exp (--  KDI) ( t  - -  l/u) 

+ K D e x p ( - - K J ) ; I  ~ ut (18) 

FD(I , t )  = 0;1 > ut 

The distribution function for comparison with 
experimental distributions is the combined distribu- 
tion of both active and dead tunnels, FT(1, t ) =  
f ( l ,  t) + FD(I, t): 

FT(1, t) = 6(l - ut) exp (--KDI) 

+ Kv exp (--KD/)[2 + KDu(t -- //u)]; 

l ~ ut (19) 

FT(I, t) = 0; l > ut 

When Fv(l, t) is integrated from l = 0 to l = ut, 
the result is 1 + KDut, which is in agreement with 
Equation 6. 

An example distribution of active and dead tunnels 

0.06 

0.05 

0.04 

Equation 19 

In i t i a l  
generation 

O,37 

0.03 
b. Dead 

O. 02 
Equation 16 

0.01 t Active 

0 ~ 
0 20 40 60 

L (l~m) 

Fig. I. Example calculated distribution of tunnel lengths for 
K D = 0.02/xm -~ and ut = 50#m. 

is calculated from Equations 16 and 19 and plotted in 
Fig. 1 for the conditions of  KD = 0.02#m -1 and 
ut = 50 #m. The active region integrates to 0.63 and 
the initial generation is 0.37, adding to 1.00 in accord 
with a constant number of active tunnels. The dead 
tunnel region integrates to 1.00 in accord with Equation 
6, (0.02/~m-l)(50#m) = 1.00. 

3. Experimental details 

Tunnel length distributions were measured on SEM 
photographs of  foil cross sections at magnifications of 
600-900. A typical photograph is shown in Fig 2 for 
etching in 1 N HC1 at 70 ~ C at a foil current density of 
200mAcro -2 for a time of 50s. Distributions were 

Fig. 2. Example foil cross section showing tunnel lengths: 1 N HC1, 
200mAcro -2, 50s, 720 x. 
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Fig. 3. Tunnel length distributions; 1 N HC1, 70 ~ C, 200 mA cm -2. 
&l = 5 #m, sum of six micrographs. Numbers on curves are dura- 
tion of experiments, seconds. 

obtained at various times from 5 to 80 s at tempera- 
tures of  70, 80 and 90 ~ C. Sums of tunnel lengths were 
taken from either three or six micrographs. Distribu- 
tions are presented in Figs 3-5. The depth of the cross 
section in which the tunnels were counted is not known 
so these figures give relative distributions only. 

Lengths of the longest tunnels as a function of 
duration of experiment from Figs 3-5 are shown in 
Fig. 6. The average velocities of  2.1 #m s-  1 at 70 ~ C 
and 3.5 # m s  -1 a t  80~ are in agreement with prior 
work [1]. No evidence is seen in Figs 3-5 of the spike 
of initial generation tunnels at L, which is indicated in 
the Fig. 3 plot. The spike, if present, should be more 
pronounced for the shorter duration tunnels. Lack of 
the spike indicates progressive nucleation early in an 
experiment rather than an immediate pulse of  nuclea- 
tion of initial generation tunnels. The remaining initial 
current must go to pits that do not result in tunnels. 
The uncounted jumble a t  the bot tom of  Fig 2 is evi- 
dence of such an occurrence. Tunnels growing parallel 
to the foil surface just under the surface [1] are also 
uncounted. 

Equation 19, omitting the initial generation, is 
dimensionalized for correlating with the data in 
Figs 3-5 for which the number of  tunnels for each nAl 
is known. 

[N'aFv(L, t)] ~- N~ {K D exp ( - K o l )  

x [2 + KD(ut -- /)1} (20) 

The number on the left hand side is the tunnel count 
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Fig. 4. Tunnel length distributions; l N HC1, 70 ~ C, 200mAcro -2, 
Al = 5 #m, sum of three mierographs. Numbers on curves are 
duration of experiments, seconds. 
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Fig. 5. Tunnel length distributions; 1 NHCI, 80~ 200mAcm -2, 
Al = 5/~m, sum of three micrographs. Numbers on curves are 
duration of experiments, seconds. 
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Fig. 6. Lengths of longest tunnels in Figs 3-5 as a function of duration of experiment. 

Fig. 7 

Fig. 6 

Fig. 5 

40 50 

at each Al. Each distribution in Figs 3-5 was fitted at 
two arbitrary points, indicated by the circles on the 
tops of  the bars, to obtain values of  KD and N~,. 
Smooth curves were then plotted of  Equation 20. (The 
numbers of  tunnels in each 5-/~m increment of  length 
were divided by 5 and by either 3 or 6, the number of  
micrographs summed, to obtain N~ on a consistent 
1-#m unit basis per sample as for KD and l.) Perhaps 
the preferential accumulation of  long tunnels at long 
etch times, shown in Fig 3, is due to death at a critical 
length [2, 3]. 

Parameter values determined from the tunnel length 
distribution of Figs 3-5 and Equation 20 are given in 
Table 1. The total numbers of  tunnels,  determined 
by summing the number of  tunnels for each 5-#m 

increment in Figs 3-5 and dividing by 15 or 30, are 
plotted in Fig. 7. The solid lines in Fig. 7 were drawn 
through the points at t > 20s using Equation 6 
dimensionalized. 

Ui = U~.(1 + KDut) (21) 

For  70~ KD -- 0.019#m -~, u = 2 .1#ms  -~ and 
KDu ~-- 0.040s -~. The intercept at t = 100s is there- 
fore about  five times the intercept at t = 0. Similarly, 
for 80~ KD ~ 0.017#m, u = 3 .5#ms -l  and KDu ~- 
0.060s -~. The intercept at t = 100s is therefore 
about seven times the intercept at t = 0. At  t < 20 s 
the numbers are considerably below the Equation 21 
lines. It  appears that progressive nucleation of tunnels 
occurs initially rather than a step increase to N~, 

Table 1. Parameter values determined from tunnel length distributions in Figs 3-5 

Fig. No. Temp. (~ C) No. of micrographs Duration (s) N~. K* (ttm -l) 
averaged 

5 70 6 15 27 (0.06) 
30 75 0.027 
80 132 0.015 

6 70 3 l 0 25 (0.034) 
15 56 0.022 
30 199 0.015 
50 223 0.013 
80 140 (0.020) 

0.019 (average) 

5 14 (0.046) 
7 80 3 15 92 0.020 

30 345 0.014 
50 589 (0.009) 

0.017 (average) 

(not shown) 90 6 15 87 (0.060) 
90 3 15 155 0.021 

* Values in parentheses are considered less accurate and not included in averages. 
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Fig. 7. Total numbers of tunnels from summation of distributions in Figs 3-5. 

in agreement with lack of the initial generation 
spike. 

Calculated values of  N~ from the fit of  Equation 20 
to the Figs 3-5 curves are shown in Fig. 8. Again, a 
progressive nucleation of active tunnels is indicated at 
t < 30 s. The plateau for the 70 ~ C data is equal to the 
zero-time intercept of  N4 in Fig. 7. For 80 ~ C, there are 
fewer data and the plateau N~ in Fig. 8 and the zero- 
time intercept N~ in Fig. 7 are less accurate but there 
is approximate agreement. The increase in number of  
initial active tunnels with time appears to be exponen- 

tial up to about 25 s. The apparent continued increase 
in N~ at t = 50 s may be the result of greater taper in 
the tunnels at 80 ~ C. 

The numbers of  active tunnels on the plateau in 
Fig. 8 are now compared to that given by Equation 2. 
The foil current density was 2 0 0 m A c m  -2 in all the 
experiments. At 70 ~ C, the average current density 
at the ends of  the tunnels is about 5 .1Acm -2 [1]. 
Average tunnel widths at 70~ measured on the 
micrographs from which Figs 3 and 5 were derived are 
about  2.1/~m. The number of  active tunnels should 
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t (s)  
Fig. 8. Calculated values of N~ from fit of Equation 20 to Figs 3-5 curves (same symbols as in Fig. 7). 

00 
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then be 

0.2 
NA = (5.l)(2.1 x 10-4) 2"~ 1 X 106cm -2 

At 70 ~ C the plateau number of  active tunnels in Fig. 8 
is N~, ~ 150. For  a magnification of ~ 700 and a 
10-cm wide micrograph the length of  foil scanned is 
10/700 = 0.014cm. The depth of  tunnels counted is 
not known but is assumed to be some fraction, qS, of  
the length scanned 

d = q~(0.014) 

so that 

150 
NA = ~b(0.014)2 = 7.4 x 105/4) 

In order to agree with the estimate from Equation 2 
the value of  q5 is 0.74 or the depth of  tunnel population 
counted is about 100 #m. 

No significant trend in the value of KD in Table 1 
with temperature is observed. The value o f K  D appears 
to decrease with time or tunnel length, but it is not 
known whether this is a real effect. 

There are several complications for actual tunnels 
that are not in the length distribution model as devel- 
oped, and thus limit its applicability. First is the pro- 
gressive tunnel initiation found in the first 25 s. Second 
is taper of  the tunnels, particularly at 90 ~ C. Third is 
penetration of the foil by long tunnels which then 
causes a larger number  of  new tunnels to initiate. 
Fourth is current to the walls of  existing tunnels. This 
current density on the walls is about 10 -3 of  the aver- 
age current density on the ends [4]. The total current 
density at the foil surface is then the sum of that to the 
tunnel ends and walls. 

iF = iE + iw (22) 

Equation 2 gives the value of iE 

i E = N A i~ w 2 (23) 

The value of iw is 

iw = N.riw(4W[~) (24) 

The ratio of  iE to iF can be obtained from Equations 
22-24, Equation 5 and i~, = 10 _3 i~ 

iE 1 
i~ = 1 + (4 x 10 3)(1 + KDL) (L /w  ) (25) 

For  an example KD = 0.02#m -~, L = 100#m,/2 = 
50#m and w = 2/1m, the value ofiE/iv = 0.77. After 
foil penetration this ratio can become much smaller. 
Because of these four complications, the short-time 
and the long-time values of  KD in Table 1 were not 
included in the averages and correlations were not 
at tempted for longer tunnels at 90 ~ C. 

4. Conclusions 

A model derived for the length distribution of  corro- 
sion etch tunnels in aluminium, tested against measured 
tunnel length distribution, showed the following: 

(1) The model reasonably fits measured tunnel 
lengths with two adjustable parameters,  the number  of  
active tunnels and the death rate per unit length. 

(2) At temperatures of  70-90~ tunnels die at an 
average rate of  about  2% per/~m of growth in length. 

(3) At temperatures of  70 and 80 ~ C, at which the 
model has validity, there is progressive nucleation of 
tunnels during the first 25 s. 

(4) The number of  active tunnels derived from the 
length distribution data is in approximate agreement 
with the value calculated from average tunnel velocities 
and widths. 
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